

Rolling Out HPV Testing for Cervical Cancer Screening and Treatment: Experience from a Multi-Country Project

TogetHER Webinar Series February 23, 2023

Thank you for joining the webinar! We will begin momentarily. Please note that all attendees are automatically muted.

Expanding access to cervical cancer screening with HPV testing

Experience and lessons learnt from a multi-country Unitaid-funded project

- 1 Overview of the challenge and Unitaid-funded CHAIs program response (3')
- 2 Expanding access to screening with HPV testing (7')

3 Uganda: Experience & lessons learnt from point-of-care HPV testing model (15')

4 Zimbabwe: Experience & lessons learnt from centralized HPV testing model (15')

Cervical cancer develops gradually, with opportunities at multiple points in time to interrupt disease progression and prevent death from invasive cancer...

Natural history of cervical cancer in HIV-negative women¹

Opportunities to prevent deaths from cervical cancer:

- HPV vaccination ("primary prevention")
- Screening and treatment for pre-cancer ("secondary prevention")
- Treatment for invasive cancer ("tertiary prevention")

Women living with HIV are **six times** more likely to develop cervical cancer than women who are HIV negative²: they are both more susceptible to HPV infection and experience more rapid progression from HPV infection to invasive cancer. The same prevention tools can save the lives of women living with HIV.

Limited access to prevention services drives a highly inequitable burden of disease, with more than 90% of the >340,000 annual deaths from cervical cancer occurring in LMICs

Estimated age-standardised mortality rates (World) 2018, cervix, all ages¹

¹Global Cancer Observatory. Estimated cancer incidence, mortality and prevalence worldwide in 2018: cervical cancer. International Agency for Research on Cancer, World Health Organization; 2018 ²World Health Organization fact sheet 22 February 2022 <u>Cervical cancer (who.int)</u>

³Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva: World Health Organization; 2020.

WHO's elimination strategy¹ calls for mobilization towards specific targets that would result in >62 million cervical cancer deaths averted in the next **Unitaid** 100 years

Adaptation of WHOs strategy for cervical cancer elimination

90%	70%	90%
OF ALL girls fully vaccinated7 with HPV vaccine by 15 years of age	OF ALL women screened using a high-performance test by 35 years of age and again by 45 years of age	OF ALL women identified with cervical disease are treated
Primary Prevention	Secondary Prevention	Tertiary Prevention
Vaccination & Communication	Screening & Treatment of pre-cancerous legions	Cancer Treatment
 HPV vaccination for 9–14-year-olds Sexuality education 	 Screening with HPV and/or VIA On-site treatment for eligible lesions with TA or Cryotherapy Referral for LEEP for other precancerous lesions 	 Ablative surgery Radiotherapy Chemotherapy

In response to the WHO Call to Action, Unitaid has invested in increasing access to life-saving screening and treatment tools by addressing key access barriers

The project worked with national and state government partners across 10 countries to map out appropriate delivery models to reach women for cervical cancer prevention

FUnitaid Innovation in Global Health

7

Program countries in order of flag appearance: Kenya, Rwanda, Malawi, Zambia, Uganda, South Africa, Zimbabwe, Nigeria, Senegal, India

Estimated grant level results as of 31 Dec 2022

* Average of Liger TA product \$925 and Wisap TA product Euro 904/ 938 ** Based on results of training and validation study; performance studies underway

- 1 Overview of the challenge and Unitaid-funded CHAIs program response (3')
- 2 Expanding access to screening with HPV testing (7')

3 Uganda: Experience & lessons learnt from point-of-care HPV testing model (15')

4 Zimbabwe: Experience & lessons learnt from centralized HPV testing model (15')

The project leveraged existing lab network capacity to offer HPV testing through an integrated approach

Swift and substantial price reductions were achieved for HPV assays across Abbott, Roche, and Hologic, ranging from 25-50%

Price reductions achieved even at low volumes

CHAI-negotiated lower pricing for LMICs was made possible by manufacturers **leveraging economies of scale** achieved through large volumes in HICs and intending to catalyze high demand in LMICs

¹ All-inclusive ² Instrument included \$7.99

🍼 Unitaid I

10

³ Different prices may apply for special projects/grants, please contact Roche directly

- ⁴ \$11.28 pricing available to 50 countries
 - ⁵ Part of all-in GX 16 program

With available guidance and existing testing capacity, CHAI conducted HPV testing pilots within public healthcare programs for 5 countries

• Across the five countries, we saw the following for testing and treatment cascade:

15,766	92%	32%	66%	71%	26%	070/
Tests	Valid	HPV-	Received	Received	VIA-	87%
conducted	results	positive	results	VIA	positive	Treated

*Some steps may not include all countries due to relevant local policies.

• Turnaround times and patient results receipt, by testing location

	Hub	Spoke	Centralized	p-value
Median turnaround time from sample collection to patient receipt	9 days (IQR: 2-43)	11 days (IQR: 6-38)	56 days (IQR: 39-91)	p<0.001
Same-day results receipt	11%	0%	0%	p=0.091
180 days results receipt	72%	63%	67%	p=0.587

- 1. In countries that offered both clinician- and **self-sampling, the latter was found to be feasible and acceptable**, allowing greater flexibility in future screening programs.
- Impact
- 2. Integration of HPV testing on existing testing platforms systems was feasible and was achieved **without additional resources** (HR, supply chain, infrastructure, lab support etc.)
- **3.** Same-day Test-triage-treat was very difficult to achieve due to HPV testing not being prioritized on POC devices; however, same-day triage-treat was possible.

At program implementation level, 9 countries instituted various approaches across different core areas of service delivery to improve the efficiency of HPV testing models

	Service delivery approach	Challenges & Learnings				
1 Sample Collection	 Most countries offered the choice of either self- 	 In 2 countries, ~60% of women opted for self-sampling – when offered a choice 				
	 or clinician-collected at facilities Self-collection has begun expansion into community settings 	 In another SSA country, split was driven by the supply purchased w/ increased self-sampling kit supply leading to increased use. 				
		• 100% of women surveyed recommended self-sampling.				
2 Near-POC vs.	 Countries offered integrated testing leveraging platforms with available capacity 	 Same-day results return possible under near-POC models, though difficult to achieve due to lower prioritization of HPV tests 				
Centralized	 Programs relied on existing sample transport and referral systems 	 In-lab backlogs impacted turnaround times and volumes, caused by breakdowns, limited staff time, and high demand for other tests 				
3 Results	 HCWs scheduled appointments for women to receive results when results were likely to be ready 	 Turnaround times did not appear to significantly impact patient result return rates 				
Return	 ART staff applied stickers to patients' files to remind staff of available results on patients' return 	 Competing space on devices made timelines for receiving results to clinic unclear. One country ensured dedicated lab time for HPV results (before 10am) to better plan for result availability 				
4 Market	 HPV test prices negotiated to reduce average cost of HPV tests to \$11.92 within pilot programs. 	Country-led negotiations and clear, funded country-demand helped to achieve even lower country-specific pricing				
Conditions	 As program expanded, average pricing per test procured dropped under \$9/ test 	Near-POC pricing is higher, countries may consider the lower costs for centralized testing relative to programmatic outcomes				

1 Overview of the challenge and Unitaid-funded CHAIs program response (3')

2 Expanding access to screening with HPV testing (7')

3 Uganda: Experience & lessons learnt from point-of-care HPV testing model (15')

4 **Zimbabwe**: Experience & lessons learnt from **centralized HPV testing model** (15')

Cervical cancer is the leading cause of cancer deaths & most common gynaecological malignancy in Uganda. CHAI partnered with MoH to integrate scalable models of screening & treatment

A Map of Uganda Showing CHAI/UNITAID Supported Sites

- Uganda's cervical cancer burden is staggering. With an ASIR* at 56.2 per 100,000, it is among top 15 countries w/ highest rates of cervical cancer attributable to HIV.
- National Screening target by 2027: 50% of women aged 25-49 years screened; 90% of screen+ women getting treatment
- Current national screening rate at 10%
- CHAI has been partnering since 2019 w/ the MoH to expand HPV testing as the primary cervical cancer screening modality, by building scalable screening & treatment models, inc. self-testing of HPV, using near point-of-care (POC) & centralized testing models

Optimal tools for screening & treatment – HPV tests ,TA & LEEP devices included in National guidelines

32,000 Women screened using HPV tests and 53,000 VIA respectively

Treatment linkage

250+ Lower-level health facilities equipped w/ portable TA devices

R

Ε

S

U

н

T S Uganda program was successful in delivering HPV testing under near-POC approach that resulted in highlighting logistical benefits associated with this model, although more costly to procure

NEAR-POC HPV TESTING MODEL: PROCESS FLOW

Near-POC testing platforms provide the opportunity to shorten wait time for the woman to receive her result back & be linked to appropriate treatment/ care

- Same-day results return to women is possible under this model, albeit with intensive efforts as HCWs often have competing priorities
- Minimizes delays due to transportion as collection & testing sites are in the same facility
- Tracking samples is easier in case results are not received at the ART clinic

🍼 Unitaid 🛛

The program adopted innovative strategies to overcome challenges associated with lab workflows, results return a& sample collection

- 1 Overview of the challenge and Unitaid-funded CHAIs program response (3')
- 2 Expanding access to screening with HPV testing (7')

3 Uganda: Experience & lessons learnt from point-of-care HPV testing model (15')

4 Zimbabwe: Experience and lessons learnt from centralized HPV testing model (15')

Cervical cancer is most common cancer among women in Zimbabwe with current infrastructure posing serious limitations to achieve screening targets. The project has made significant strides since 2019

CHA/ Unitaid implementation sites have been concentrated in Mashonaland East province

- Zimbabwe has among the highest burden of cervical cancer in the world. With an ASIR* at 61.7 per 100,000, it is among top 10 countries with highest rates of cervical cancer attributable to HIV.
- **Current national screening rate** at 20%, with only an estimated 10% of women in the **rural areas** having ever accessed a screen by 2021
- National screening target: 400,000 / year
- CHAI has been partnering since 2019 with the MoH to scale HPV testing as the primary cervical cancer screening modality, establishing scalable models of screening & treatment that leverage the existing deep penetration of Hologic platforms in the country

Optimal tools for screening & treatment – HPV tests and TA devices included in National guidelines

... of 212 screening sites across all 10

138 provinces offering treatment using TA R

Ε

S

U

L

S

Zimbabwe was successful in delivering HPV testing using the centralized approach, showcasing the potential it holds to maximize testing potential for HPV screening

Samples collected at different points – Clinic, outreach in community by nurses & Village health workers

CENTRALIZED TESTING MODEL: PROCESS FLOW

Samples **transported** to hub & forwarded to testing lab

Centralized testing models offer the opportunity to maximize testing potential for HPV screening

- Efficient as it leverages on existing platforms, lab workflows, sample referral systems & results return used for viral load testing
- Lower pricing as compared to near-POC tests
- Flexible, allows differentiated delivery models for different use cases
- Offers best mass screening potential for low-resource settings
- Higher throughput

Village health workers follow up clients not presenting themselves for treatment

Results returned to patients utilizing LIMS frontline SMS system

Effective interventions were implemented targeting demand creation, maximizing testing potential of existing platforms & streamlining sample referral & result return processes

dissemination of the modifications to secure buy-in

	Challenge	Approach adopted				
1	 Hesitance among women to screen especially WLHIV, given fear of stigma 	 Set up community-based initiatives leveraging CSO's, CHCW's to increase program visibility 				
Demand generation	 Women who are healthy rarely visit health facilities/ seek screening 	 Screening program tailored to WLHIV, & other women who are otherwise healthy but rarely seek screening 				
2 In-lab workflow	 Inadequate testing capacity & lack of prioritization to test HPV samples given competing priorities for platform (HIV, TB, Covid) 	 Engaging with HIV viral load program to create dedicated capacity for HPV testing on validated platforms to meet desired targets (25% capacity should be utilized for HPV testing) 				
³ Sample referral	 Still-evolving processes to ensure results return to facility/ women especially given 	 Developed LIMS based results return system- clients get SMS as soon as test results validated & published 				
systems & results return	newer models of self-collection	 Document modifications to sample referral workflows that enable integration of HPV samples into existing transport systems + National endorsement & 				

Function in Global Health

We leave you with two images here – First is a lab technician testing an HPV sample at a lab in Zimbabwe; and happy faces from Uganda after using the thermal ablation device for treatment of precancerous lesions. Thank you for listening!

Zimbabwe – HPV testing being carried out on the Hologic Panther machine at Marondera Laboratory Uganda – Cervical Cancer Focal Person in Mbarara RRH showcasing Unitaid-CHAI donated TA device for precancer treatment of HPV positive women

ANNEX

At program implementation level, HPV testing in 9 countries utilized integration on existing systems, with delivery models inc. from routinefacility screening, campaign models & community self-sampling

	Kenya	Malawi	Nigeria	Rwanda	South Africa	T ambia	Senegal	Uganda	Zimbabwe	SUMMARY
Testing model used	Centralized & Near-POC	Near-POC hub and spoke	Centralized & Near-POC	Centralized	Centralized	Centralized & Near-POC	Near-POC hub and spoke	Centralized & Near-POC	Centralized	 7 Centralized 6 Near-POC 2 Spoke
Deployment model used (HPV) Deployment model	Country referral hospitals to service as COE for HPV roll-out & community self sampling	Health center routine screening	Offered at sites with FP, ART and ANC services with community mobilization	Health centers using routine screening and campaigns	integrating HPV testing at LBC collection sites in pilot provinces	Passive demand through existing channels (ART clinics, FP, etc)	Hub & spoke testing with test & treat model	Testing offered at ART for 62 hub sites for routine- screening	Routine screening & Community self sampling through CHCWs	 9 routine screening 2 campaign 2 community self-sampling
Results Return	-Facility return integrated into HIV LMIS system. -Scheduled return visits for clients	Health Surveillance Assistants for follow-up	Direct follow-up to HPV+ women by HCWs and CHAI teams	Direct follow-up with HPV+ often through CHAI outreach	Integration within existing LBC systems (TrakCare/email sent to site)	Women to return to facility for results	Scheduled return visits for when result availability is expected	Calling HPV+ and returning results on ART return visits	ART visits and CHCW follow-up with results	 Proactive outreach ART return Scheduled visits
HPV Testing Model	Gx integration if capacity, otherwise using Roche/Abbott	Gx16 & Gx4 integration with lab time set- aside for HPV	Integration at PEPFAR mega labs & GeneXpert sites	Integration with existing centralized device capacity	Dedicated devices for HPV testing used at NHLS sites	Centralized testing where Hologic exists; Gx in other regions	Integration with Gx4 platforms	Integration on on-site GeneXpert for most sites	Community and facility samples sent to integrated centralized labs	 8 integrated 1 dedicated
Target population	WLHIV (5%) and general population (95%)	WLHIV and general population	WLHIV (20%) & general population (80%)	WLHIV (15%) & Gen Pop (85%) Gen Pop receive HPV tests only if available	Same target population as existing LBC program	WLHIV, particularly under CDC and PEPFAR support	WLHIV and general population at all sites	WLHIV at ART sites	WLHIV and target populations (e.g sex workers)	 8 WLHIV 6 General population 1 targeted
Models of sample collection	Self collection HCW collection	Self collection HCW collection	Self collection HCW collection	Self collection HCW collection	HCW collection	Self collection HCW collection	Self collection HCW collection	Self collection	Self collection HCW collection	~50% self ~ 50% HCW

Question & Answer

TogetHER Webinar Series February 23, 2023